OPTIMALITY-PRESERVING ELIMINATION OF LINEARITIES IN
JACOBIAN ACCUMULATION *
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Abstract. We consider a mathematical function that is implemented in a high-level program-
ming language such as C or Fortran. This function is assumed to be differentiable in some neighbor-
hood of a set of input arguments. For available local partial derivatives of the arithmetic operators
and intrinsic functions provided by the programming language, the Jacobian of the function at the
given arguments can be accumulated by using the chain rule. This technique is known as automatic
differentiation of numerical programs.

Under the above assumptions the values of the local partial derivatives are well defined for
given values of the inputs. A code for accumulating the Jacobian matrix that is based on the
chain rule takes these partial derivatives as input and computes the nonzero entries of the Jacobian
using only scalar multiplications and additions. The exploitation of the associativity of the chain
rule or, equivalently, the algebraic properties of the corresponding field (R, *,+) — in particular,
associativity of the multiplication and distributivity — to minimize the number of multiplications
leads to a combinatorial optimization problem that is widely conjectured to be NP-hard. Several
heuristics have been developed for its approximate solution. Their efficiency always depends on the
total number of partial derivatives.

Linearities in the function lead to constant partial derivatives that do not depend on the input
values. We present a specialized constant folding algorithm to decrease the size of the combinatorial
problem in order to increase the efficiency of heuristics for its solution. Moreover, we show that this
algorithm preserves optimality in the sense that an optimal solution for the reduced problem yields
an objective value no worse than that of an optimal solution for the original problem.

Key words. Jacobian accumulation, linearities, constant folding

AMS subject classifications. 90C27, 26B10, 68N99

1. The Problem. A given vector function
fx):R"—» R™

is implemented in a numerical program in some higher programming language such
as C or Fortran. For the purpose of automatic differentiation (AD) [5], the numerical
programs are represented by directed acyclic graphs (DAG) with elemental partial
derivatives as edge labels. AD provides a variety of elimination techniques that allow
propagation of derivative information. The choice of the technique is subject to the
structure of f and application-dependent optimization criteria.

Generally the code for f contains control flow (loops, branches) that does not
allow the representation with a single DAG. Locally, for example within a basic block,
a representative DAG can be constructed. For the purpose of this paper we assume a
scenario where the accumulation of a local Jacobian is beneficial. In practical terms,
we may encounter a frequently executed innermost loop body that has an evaluation
cost that is relatively high compared to the cost of storing a local Jacobian. We find
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a highly efficient procedure to calculate the local Jacobians, which are then used in a
fashion determined by the context.

The paper is structured as follows. Section 1.1 introduces the main ideas behind
AD and how they are used as the context for our work. In Section 1.2 we collect
elimination techniques that are used to accumulate the Jacobian based on linearized
variants of the computational graph. In Section 1.3 we summarize the problems
that motivated our work. Section 2 represents the heart of the paper. We present
new algorithms for the optimality-preserving elimination of linearities in Jacobian
accumulation by constant folding. An interesting observation is made in the context
of face elimination. Section 3 concludes the paper with a discussion of how the new
algorithms are used in practice.

1.1. The Context. The DAG based combinatorial problem is detailed in Sec-
tion 1.2. However, for the sake of better understanding of our contribution, we in-
troduce here the relevant AD concepts. Rather than repeating the theoretical basis,
we use an example for this purpose. For a formal introduction to the mathematical
principles underlying AD, we refer the reader to [5, 13, 4, 2, 3].

Consider the following excerpt from a toy example written in C. Suppose that this
section of the code is embedded in a larger computation aiming at the computation
of the components of some vector h as a function of an input vector x.

01  hlkl=sin(x[01*x[1]); k+=1;

02 if (fmod(k,2))

03 h[k]=2xh[k-1];

04 else

05 for (i=0;i<k;i++) {

06 t1=x[0]+x[1];

07 t2=t1*sin(x[0]);
08 x[0]=cos(t1%t2);
09 x[1]=-sqrt (t2);

10 }

11 h[k]+=x[0]*x[1];
Line numbers have been added for simpler referencing within the text. The statements
in the lines 06-09 form a basic block Fj; see Figure 1.1 on page 4. Note that F3 is
executed k times. If k is used to iterate through the elements of the potentially very
large vector h, then it may be worth putting additional effort into the optimization
of the derivative code for Fj.

Conceptually, AD is based on a decomposition of the evaluation routine for f
into a three-address code' of the form

vj = ¢;(vi,vp) (1.1)
forj=1,...,qand h,i=1—n,...,q,7 > h,i. The n independent variables 1, ...,z
correspond to vi_p, .. .,vo. We consider the computation of the first derivative of the
dependent variables y1, .. .,yn represented by m variables v; : j € 1 —n,...,q with

respect to the independents. The resulting m x n matrix is known as the Jacobian
matriz of f.

The elemental functions ¢;, j =1,...,q, are assumed to have jointly continuous
partial derivatives in a neighborhood of the current argument. The values of these

IWe assume that there are at most binary arithmetic operators and intrinsic functions. The
generalization is trivial.
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partials can be computed in parallel with the function itself for given values of the
independent variables. Consequently, the forward mode of AD propagates directional
derivatives as

. 0p; . 0, . .

0 = 8—1};(1),',1;,1) * Up + 8—1}5(1),',1;,1) x0; forj=1,...,q. (1.2)
In reverse mode we compute adjoints of the variables on the right-hand side in (1.1) as
a function of local partial derivatives and the adjoint of the variable on the left-hand
side:

Ly
T; =0 8807 (vi,vp)

a”’_ forj=gq,...,1—n. (1.3)
Tp = Tj * a—f}j(vz,vh)

Equations (1.2) and (1.3) can be used to accumulate the Jacobian of f at a
computational complexity that is proportional to n and m, respectively. One simply
lets @ or g range over the Cartesian basis vectors in R™ or R™. Basic blocks can be
considered as vector functions themselves. Forward and reverse mode AD, or, as we
will see below, local combinations of the two, can be applied to compute the local
Jacobians. If y = f(x) is computed by a sequence of basic blocks Fi,..., F; and
assuming the availability of the local Jacobians F7,..., F], then equations (1.2) and
(1.3) can be generalized as follows:

:l]j:F]{i'j forj=1,...,1 (1.4)
and

zj=(F)Ty; forj=1,...,1 , (1.5)
where z; = (mﬁ eV:i=1,...,n;) and y; = (yf € V:i=1,...,mj ) are the inputs
and outputs of Fj, respectively.

The control-flow graph of the example is shown in Figure 1.1 (a). Assuming that
code for accumulating the local Jacobians FY, ..., F; of the basic blocks Fi,..., Fy
is available (some aspects of how to generate such code automatically and how to
optimize it is the subject of this paper), the forward and reverse modes of AD com-
pute products of the Jacobian and its transposed with a vector, respectively. In
Figure 1.1 (b) products of the local Jacobians F] with the directions &; in the input
space of each basic block F;, i = 1,...,4, are propagated forward in the direction
of the flow of control. The direction is reversed in reverse mode. Products of the
transposed Jacobians (Fi’)T with adjoint vectors in the respective output spaces are
propagated reverse to the direction of the flow of control. In Figure 1.1 (c) we have
switched the orientation of the edges to illustrate this fact.

To finish this introductory example, we make the following important point:
Thanks to the associativity of the chain rule it is possible to preaccumulate derivative
information of certain parts of the code and use this information in the propagation of
directional derivatives (in forward mode) or adjoints (in reverse mode). Occasionally
it is worthwhile to put additional effort into the optimization of this preaccumulation
code. In this paper we discuss various issues arising from the optimization of Jacobian
code in the context of automatic source transformation techniques.
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Fic. 1.1. Control flow graph of (a) original code, (b) tangent linear model, (c) adjoint model

1.2. Elimination Methods. Let f represent a basis block that is subject to
preaccumulation as outlined in the previous section. The DAG G = (V, E) is induced
by the code for f [1]. We use a numbering scheme with n independent vertices
T1 = Vi—p,...,Typ = vy € X, p intermediate vertices vi,...,v, € Z, m dependent
vertices Y1 = Vp41,...,Ym = Up+m € Y, representing the corresponding independent,
intermediate, and dependent variables. For notational simplicity and without loss of
generality we assume that the dependent variables are mutually independent. This
situation can always be reached by introducing auxiliary assignments. Consequently,
V = X UZUY. The numbering is subject to the dependence relation <, where
v; < vj (and vy < v; as in (1.1)), and v; < v; = i < j. In Figure 1.2 (a) we show

Fic. 1.2. (a) Computational graph G for (1.6), (b) vertex elimination G — 3, (c) edge-front
elimination G — (1,3), (d) edge-back elimination G — (3,4)

the DAG for F3 from the previous section. It represents a decomposition of the code
into a sequence assignments of the results of the elemental operations ¢ to unique
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intermediate variables, for example,

v =v_1 + Up; V2 =sin(vg); vs = v1 + va; Vg4 = V1 * V3;

1.6
vs = 1/v3; v = cos(vs); V7 = —U5 (16)

This representation is also referred to as the code list. The intrinsics and operators
provided by the underlying programming language constitute the possible elemental
operations. Edges (i,j) € E are labeled with partial derivatives ¢j; = %ﬁf € R of
the elemental operations associated with vertex j with respect to the corresponding
arguments. For instance, in the example we have cg4 = —sin(vs4). All edge labels

form the matrix

C(z):R" — R(p+m)x(n+p)

The computation of the Jacobian f'(z) can be interpreted as an elimination sequence
in C:

o : RPTm)x(ntp) |, gpmxn

Equivalently, o transforms G into a bipartite graph o(G) whose edge labels are the
nonzero elements of f'. Alternatively, Gaussian elimination can be applied to the
extended Jacobian C — I, where I is the identity as shown, for example, in [5].

The graph-based elimination steps are categorized in vertex, edge, and face elim-
inations. In G a vertex j € V is eliminated by connecting its predecessors with its
successors [7]. An edge (4,k) with ¢ < j and j < k is labeled with cg; + cgj - ¢j5 if it
existed before the elimination of j. We say that absorption takes place. Otherwise,
(i, k) is generated as fill-in and labeled with c; - ¢;; The vertex j is removed from G
together with all incident edges. Figure 1.2 (b) shows the result of eliminating vertex
3 from the graph in Figure 1.2 (a).

An edge (i,7) is front eliminated by connecting i with all successors of j, followed
by removing (Z, j) [10]. The corresponding structural modifications of the c-graph in
Figure 1.2 (a) are shown in Figure 1.2 (c) for front elimination of (1,3). The new
edge labels are given as well. Edge-front elimination eventually leads to intermediate
vertices in G becoming isolated; that is, these vertices no longer have predecessors.
Isolated vertices are simply removed from G together with all incident edges.

Back elimination of an edge (i,j) € E results in connecting all predecessors of 4
with j [10]. The edge (i,7) itself is removed from G. The back elimination of (3,4)
from the graph in Figure 1.2 (a) is illustrated in Figure 1.2 (d). Again, vertices can
become isolated as a result of edge-back elimination because they no longer have
successors. Such vertices are removed from G.

Numerically the elimination is the application of the chain rule, that is, a sequence
of fused-multiply-add (fma) operations

Cki = Cji * ckj (+cg;) < optional (1.7)

where the additions take place in the case of absorption or fill-in is created as described
above.

Aside from special cases a single vertex or edge elimination will result in more
than one fma. Face elimination was introduced as the elimination operation with the
finest granularity of exactly one multiplication? per elimination step.

2Additions are not necessarily directly coupled.
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Vertex and edge elimination steps have an interpretation in terms of vertices and
edges of GG, whereas face elimination is performed on the corresponding directed line
graph G. Following [9], we define the directed line graph G = (V, £) corresponding to
G = (V, E) as follows:

—{- (Z,7) EE}U{@ UJEX}U{® v; €Y}

and

£={(GD, Gb): k) € B}
V(ED, GD) vJeXAJ, ber)
UG, GBD) tv; €Y A(iyj) € E}

That is, we add a source vertex (F) and a sink vertex (5) to G' connecting all inde-
pendents to and all dependents to (5. G has a vertex v € V for each edge in the
extended G, and G has an edge e € & for each pair of adjacent edges in G. Figure 1.3
gives an example of constructing the directed line graph in (b) from the graph in (a).
All intermediate vertices € V inherit the labels ¢j;. In order to formalize face
elimination, it is advantageous to move away from the double-index notation and use
one that is based on a topological enumeration of the edges in G. Hence, G = (V, &)
becomes a DAG with V C IV and £ C IV x IN and certain special properties. The
set of all predecessors of j € V is denoted as P;. Similarly, S; denotes the set of its
successors in G. A vertex j € V is called isolated if either P; = () or S; = . Face
elimination is defined in [9] between two incident intermediate vertices ¢ and j in G
as follows:
1. If there exists a vertex k& € V such that P, = P; and S, = §j, then set
¢k = ¢k + cjc; (absorption); else V = VU {k'} with a new vertex k' such that
Py = P; and Sy = S; (fill-in) and labeled with ¢ = ¢jc;.
2. Remove (i,7) from &.
3. Remove ¢ € V if it is isolated. Otherwise, if there exists a vertex i’ € V such
that Pir = Pz and Si/ = Si, then
e set ¢; = ¢; + ¢y (merge);
e remove 7'
4. Repeat Step 3 for j € V.
In Figure 1.3 (c) we show the elimination of (i,j) € &, where i = @ and j =
GD.

A complete face elimination sequence oy yields a tripartite directed line graph
or(G) that can be back transformed into the bipartite graph representing the Jacobian
f'.

In [9] it was shown that vertex and edge eliminations can be interpreted as groups
of face eliminations and that face elimination sequences can undercut the number of
multiplications of an optimal vertex or edge elimination sequence. We note that
any G can be transformed into the corresponding G but that a back transformation
generally is not possible once face elimination steps have been applied. Therefore,
face eliminations cannot precede vertex and edge eliminations.

In a source transformation context the operations (1.7) are expressed as actual
code, the Jacobian accumulation code jac. The latter is based on (1.1) augmented
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@) (b) (©

Fic. 1.3. (a) G extended, (b) G overlaid, (c) face elimination

with statements that compute the cj; for all i < j. For (1.6) we get®

v =v_1+vy; c1,-1=1; c1o0=1;
v2 = sin(vg); c2,0 = cos(vp);
v3=wv1 +w3; 31 =1; c32=1;
Vg = V1 *¥ V3, C4,1 = VU3; C4,3 = V1;
vs = /u3; 53 = (2y/v3)7 Y

v = cos(va); cga = — sin(va);

vy = —us; cr5 = —1;

As most of the intermediate variables are used only once, their creation and assignment
should be avoided by the source transformation tool. However, they are helpful for
illustrative purposes as jac can be written in terms of these auxiliary variables. For
example, forward vertex elimination, that is, the elimination sequence (1,2,3,4,5) in
G (Figure 1.2), leads to the following Jacobian accumulation code:

€3,—1 = C3,1 ¥C1,—1; C3,0 = C3,1 ¥C1,0; C4,—1 = C4,1 ¥C1,—1; C4,0 = C4,1 * C1,0;
C3,0+=C3,2 * C20;
C4,—1F=C43 % C3 15 C40F=C43*C30; C5,—1 = C5,3 ¥C3,—1; C5,0 = C5,3 * C30;

Ce,—1 = Ce,4 ¥ C4,—1, C6,0 = C6,4 * C4,0;

T = W N =

C7,—1 = Cr5%C5,—1; Cr0o =C75 *¥C50

For convenience we use the increment operation += known from C. A practical mea-

3For better readability we write the indices of the cj; with commas.
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sure for the cost of computing f' = o(C(x)) is the count of multiplications #. of
edge labels. The cost of the forward vertex elimination sequence* above is 13. In
Section 3 we discuss other options for measures.

1.3. Constant Elimination Operations. The edge label multiplications can
be categorized into t¢rivial, constant, and variable multiplications ( *;, ., *,) based
on the type of operands as shown in Figure 1.4. For a repeated Jacobian computation
(that is, computations for distinct x), only the %, have to be re-executed. The %,
can be transformed into toggling the sign, and . can be executed at compile time in
constant propagation fashion. Therefore we take only #., as our cost measure.

No known algorithm produces an optimal elimination sequence for a general DAG
with polynomial complexity. To approximate an optimal 67(G) such that

e, (04(9)) = mig){#*v(fff)} ;

o (

we can use heuristics [12].

trivial
constant
variable

+1 *
constant:  Cj; = const | ¢
variable: Cji = Cji (:L‘) *¢

-~
*

o
*

-~

trivial: Cji

* %
< o
* %
SIS

FiG. 1.4. Multiplications cj; * cy;

One can argue that code optimization via constant propagation and constant
folding algorithms built into compilers is already capable of optimizing *; and .
away. Therefore, an AD source transformation tool would not necessarily have to be
concerned with the explicit removal of the nonvariable multiplications. However, we
need to be concerned with the cost of the heuristic approximation of &, which makes
any reduction of the initial problem size by constant folding desirable, even though the
approximation time is absorbed into compile time, not run time. For sufficiently large
problems this cost is a critical hurdle, as is particularly evident for face elimination.
The directed line graph G is a much larger data structure than G, which translates into
a vast search space for any face elimination heuristic. A heuristic that is aware of the
edge label categories and maintains those correctly for fill-ins and updates is even more
complex and costly. Therefore, a viable heuristic may not distinguish label categories,
and one can easily construct cases where #.(01) = #.(02) but #.,(01) < #+«,(02).
Constant folding can shrink the size of G (and G) significantly for codes with large
linear portions. We concentrate on the following issues:

1. Reduction of the problem size through constant folding in G
2. Constant folding and preservation of optimality
3. Implementation

2. Linearities and Constant Folding. The search spaces for the various elim-
ination techniques can be expressed as metagraphs M (G) with vertices representing

4Note that the cost of computing the Jacobian by the classical forward and reverse modes is
n*|E| and m x| E|, respectively. For (1.6) we have n = m = 2 and |E| = 10. Forward (resp. reverse)
vertex elimination is equivalent to the sparse forward (resp. reverse) mode of AD [5].
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G at different elimination stages. M (G) is a DAG. Each edge indicates an elimination
step labeled with its cost. An elimination sequence o is a path in M(G) from the
minimal vertex representing GG to the maximal vertex that represents the bipartite
o(G). An optimal sequence is a path with the minimal sum of metagraph edge labels;
see Figure 2.1. For edge elimination all edges (i,7) in G’ determine the number of

@ ><

Fic. 2.1. (a) G, (b) vertez elimination metagraph, (c) edge elimination metagraph
out-edges of each vertex G’ in the metagraph by
21{(i,5) 1,5 € ZY + W(i,5) =i € X,j € Z}+ [{(i,4) :i€ Z,j €Y}

The number of edges in G is a reasonable indicator for the size of the metagraph, that
is, the search space.

As a starting point we consider a transformation of G = (V, E) using a sequence
oe. of constant edge eliminations,® that is, #.,(0e, (G)) = 0. This yields G' =
(V',E") = 0.,(G) such that |E'| < |E|, which reduces the search space. The resulting
graph G’ implies a metagraph M (G'), which is a subgraph of M(G) with G' as
minimal vertex. We have to ensure that M (G") still contains a path with the minimal
sum of metagraph edge labels. In other words, an optimality preserving o, satisfies

#a, (07(G") # #4,(6£(9))-

2.1. Single Expression Use Graphs. Similarly to Section 1.2 we denote the
set of direct successors of a vertex v; by S; = {v;](i,j) € E}; the set of direct
predecessors of v; is denoted by P; = {v;|(i,j) € E}. G has the single expression use
(seu) property if |S;| =1 Vv; € Z. This is true, for instance, for any set of right-hand
sides of assignments that can be computed independently from each other. For such G
there exists a polynomial algorithm that constructs an optimal elimination sequence
6 first introduced in [11].

ALcoriTHM 1 (optimal seu elimination). For a given seu graph G perform vertex
elimination steps in the following order, Vv;,i =1,... p:

(1) Determine a minimal v; — X separating set P;.

(2) If |P| < |P;| perform vertex elimination of all vertices {vj : v; < v; Avp <

vV € P;} reverse ordered by index j.
After these steps have been performed for all v;,
(8) perform vertex elimination of all remaining vertices reverse ordered by index

J-

5View a vertex elimination as a group of edge eliminations.
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If G is a tree, then this algorithm yields the reverse mode of AD. Because of the
seu property there is no advantage to be gained from face elimination over edge or
vertex elimination; that is, ¢ can be written as ¢.. The construction of &, relies on

(1) e ©) @
F1G. 2.2. Four steps in Algorithm 2; labels c are constant, and c(x) are variable

attaining the lower bound of operations required for each v € Z defined by the size of
the smallest v — X separating vertex sets. The following algorithm creates a o, that
reduces (steps 1-3) or maintains (step 4) the edge count; see also Figure 2.2.

ALGORITHM 2 (seu constant folding). For a given G create 0., with the following
steps:

(1) Back eliminate all trivial edges.

(2) Back eliminate (j, k) if (j,k) and (3,j) are constant Vi € P;.

(3) Front eliminate all trivial edges (i, j) if |Pj| =1

(4) Front eliminate all trivial edges (i,j) if S; C Y.
One can easily see that none of the steps suggested here increases the minimal sepa-
rating vertex set size and therefore o, is optimality preserving. Note that this may

F1G. 2.3. (a) and (b) situations not covered by Algorithm 2, (c) choosing a v — X separating set

leave trivial and constant edges in G’ that cannot be eliminated with any of the steps
given in this algorithm; see Figure 2.3 (a,b). While step 4 does not reduce the edge
count, it is the result of considering the possibility of executing elimination steps that
necessarily have to be part of the optimal elimination sequence. The application of
the constant folding to seu graphs is a theoretical exercise as the optimal solution is
constructed and does not require a search space reduction. However, Figure 2.3 (c)
illustrates a case not covered by the purely structural information used in the con-
struction of the optimal elimination sequence. Considering step 1 in Algorithm 1
there is a choice in picking a minimal separating set that may lead to a suboptimal
elimination sequence. The v — X separating set indicated by the gray filled vertices
in Figure 2.3 (c¢) yields

ty =bxd;ts =axcjtz =axty;ty = 1xtoty =ty + gt = 1 %ty
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as part of the computation, whereas picking all independents as separating set yields
tl = b*d,tg = ]_*C;tg = 1*C+t1;t4 :a*t3;t5 :a*t2

If, however, a, b, d are all constant and ¢ is not, we have two versus one constant mul-
tiplications. Fortunately, an addition of minimal vertices is the only case exhibiting
such a problem, and it can be overcome simply by choosing the P; such that it leaves
the elimination of the vertex in question for step 3.

2.2. Directed Acyclic Graphs. We already pointed to the lack of an algo-
rithm that exactly determines 6(G) with polynomial complexity. Algorithm 2 was
motivated by the construction of 6 in Algorithm 1 and the condition |E'| < |E|.
The latter is the actual motivation here as the implied search space reduction per-
mits computationally more expensive heuristics. Between seu graphs on the one side
and generic DAGs on the other side there are currently no other, more generic struc-
tural properties of DAGs known to imply anything about the optimal elimination
sequences. Therefore, a plausible starting point for generic DAGs is to require the seu
property for subgraphs. We hypothesize that we preserve optimality through affecting
the respective elimination subsequences only.

AvrcoriTHM 3 (DAG constant folding). For a given G do the following steps in
order:

(1) IfVie PNk € S; : cji,cyj are constant,

then eliminate® j if |S;| =1 or |P;| = 1.
(2a) Back eliminate all trivial edges (i,7) if |S;| = 1.
(2b) Front eliminate all trivial edges (i,7) if |P;| = 1.
We already mentioned the potential of face elimination in the corresponding directed
line graph to undercut the operations count of vertex and edge eliminations. There-
fore, we have to prove optimality preservation in terms of face elimination sequences.

PROPOSITION 1. Back elimination of trivial edges with |S;| = 1 (step 2a) pre-
serves optimality.

Proof. Assume cj; = 1, and consider an optimal face elimination sequence o for
G. We can construct o' for G’ the directed line graph for G' = G — (i,j) with an
iteration over o. In each step k we construct a subsequence o}, and a remainder oj1.

Let r» denote the vertex ing.
initialize: ki=1 oy:=0 G1:=G G =G
while Ok ;é w Spllt Ok = (X7 (p7 Q)’ Uk+1)7
where (p, q) is the first face in oy, with por ¢ € P, U S,
o, =X
if g#r Ap#r then o} := o}, U (p,q) *)
G'et1 :=0,(G)
Grt1 = (X, (p,9))(Gr)
There are three scenarios for (*).
1. If ¢ € S, (p # r is implied), then P, and S, are identical between Gy and
G- That means the potential fill-ins are identical Fg,(p,q) = Fg;(p,q) =
({v}, {(v,t)|t € Sg} U {(s,v)|s € Pp}); see Figure 2.4. Therefore, this case
does not induce any further distinction between o and o'.
2. If ¢ € P,, then there may be a fill-in Fg, (p,q) = ({v}, {(v,r)} U {(s,v)|s €
Pp}), which differs from Fg; (p,q) = ({v},{(v,t)|t € S} U{(s,v)|s € Pp}).

Sinterpreted as edge-front or edge-back elimination, respectively
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F1a. 2.4. Scenario 1: a subgraph of G overlaid over the corresponding subgraph of G before
(left) and after (right) face elimination of (p,q)

Ok G

Gr — (p,q) Gr — (p,q)

F1G. 2.5. Scenario 2: face elimination before (left pair) and after (right pair) constant folding

A subsequent elimination of (v,r) will be skipped according to the condition
in (*). This coincides with the fact that the resulting edges are identical to
the (v,t) that have already been created in G'y11; see Figure 2.5. The sets
{(s,v)|s € P,} are identical, and subsequent eliminations of the (s,v) fall
under (*).
3. The scenario of p € S, is symmetric to ¢ € P,.
The condition in (*) excludes some elimination steps (p, ¢). For the entire elimination

sequence o' = |J oj, we therefore have |¢'| £ |o|. O
k

The proof for the respective statement for |P;| = 1 (step 2b) follows from symmetry.

PROPOSITION 2. Vertex elimination of j with (i,j) and (j,k) constant for all
i € Pj and k € Sj and (|Sj| = 1V |P;| = 1) preserves optimality (step 1)

Proof. Assume the case with |S;| = 1. We follow the same argument as the proof
for Proposition 1 where we skip all elimination steps (p,q) for which p = @ or
q= @ |P;] =1 follows from symmetry. O
All steps in Algorithm 3 reduce the edge count. Similarly to Algorithm 2 trivial and
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constant edges are left in the graph, and we can look for further reductions by adding
the following steps to Algorithm 3:

(3a) Back eliminate all trivial edges (i, 7) if |P;| = 1.

(3b) Front eliminate all trivial edges (i, j) if |S;| = 1.
This implies |P;| > 1 and |S;| > 1. Otherwise we would have used steps 2a or 2b,
respectively.

PROPOSITION 3. Front eliminate all trivial edges with |S;| = 1 preserves opti-
mality (step 3b).

Proof. Again we use the same approach of skipping all elimination steps (p, q)

?q%@ /2

g g

F1G6. 2.6. Trivial labels cj; = 1

with p = or q= ; see Figure 2.6. O

Note that there is no reduction in the edge count unless (i,k) € G,S; = {k}, that
is, we have absorption. In either case optimality is preserved. There are, however,
two issues. First, even with absorption we have to account for the extra addition
Cki = Ck; + cxj when either cg; or ci; or both are variable; see also Section 3. Second,
without absorption we duplicate the potentially variable label cp; by removing the
trivial label c;;. This is contrary to the idea of preserving scarcity mentioned in
Section 3. The proof for step 3a follows from symmetry.

Similar to steps 3a/3b we can also extend for constant labels with the following
two steps:

(4a) Back eliminate (i, ) if |Pj| =1, P; = {h} and (h, 1), (i, ) constant.

(4b) Front eliminate (4, j) if |S;| = 1,S; = {k} and (¢, j), (j, k) constant.
Considering step 4b we observe that in case of absorption there will be no extra
addition as long as (i, k) is constant. Even without absorption these steps preserve
scarcity as there is no variable fill-in.

2.3. Constant Face Elimination. The suggested Algorithm 3 even with the
extension steps 3 and 4 does not preeliminate all constant or trivial labels from G.
Since we already pointed to the advantage face elimination may yield over vertex and
edge elimination, we should consider the possibility of preeliminating constant faces.
The search space represented by M (G), the metagraph for the directed line graph, is
vastly larger than the M (G) for vertex or edge elimination. Still, the edge count in
G, that is, the number of intermediate vertices in G is a reasonable, although crude,
indicator for the search space size.
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Any elimination of an (¢,j) in G where |S;| = 1 or |P;| = 1 leads to the removal
of i or j, respectively. It can be written as an edge elimination and would therefore
already be covered by Algorithm 3. We consider scenarios that cannot be interpreted
as edge eliminations. The least amount of structural change is therefore the removal
of an edge in G by face elimination with absorption. That is, we look at (7, j) with
constant labels on ¢ and j and 3k with P, = P; and S, = S; and k has a constant
label as well. Consider the example in Figure 1.3. If both ¢3; and c43 are constant and
none of the other edge labels are, then the previously introduced algorithm would not
fold these two constants. One might expect that, similarly to the DAG, it was safe to
preeliminate this face in the directed line graph because the result is absorbed in c4;
and we basically just remove an edge from G at no cost. Somewhat surprising it turns
out that such an edge removal may actually increase elimination cost, as the example
in Figure 2.7 illustrates. The original graph has an optimal elimination sequence of

F1G. 2.7. Removing (3,7) by constant face elimination

length 3, for instance, ((2,4), (6,8),(3,7)). Now we assume that both 3 and 7 have
constant labels, and we eliminate (3, 7) and absorb into 5, thereby just removing (3, 7).
One can perform an exhaustive search and see that there is no complete elimination
sequence in the resulting graph G — (3,7) with a length < 3.

An attempt to prove the preservation of optimality of a face elimination step that
modifies G to G’ would assume an optimal elimination sequence for G and then try to
show that this elimination sequence contains a subsequence that is complete for G’.
This requires that all fill-in generated in G’ is a subset of the fill-in generated in G.
With the current rule for merging of vertices in the face elimination definition, this is
not necessarily the case once a single edge is removed. Edge and vertex eliminations
and the conditions and predecessor and successor sets group edge eliminations in a
way that eliminates this issue, as shown in the respective proofs for constant folding
steps.

3. Conclusion: Practical Use and Further Observations. Constant fold-
ing as presented here is implemented in the OpenAD” framework of the Adjoint

Twww-unix.mcs.anl.gov/~ utke/OpenAD
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Compiler Technology & Standards (ACTS) project. We mentioned in Section 1 that
heuristics may be unaware of the label categories, as is the case with the face elimina-
tion heuristics currently used in OpenAD. The target application of OpenAD within
the ACTS project is the MIT general circulation model. Since large portions of the
model code are linear, one has a convincing case for using constant folding on G and
creating a directed line graph only for the nonlinear core.

The choice of the number of multiplications as an optimality measure ignoring
additions and memory access appears rather arbitrary when considering the raw exe-
cution time of a given Jacobian computation. We are well aware of the impact of data
locality, pipelined operations, and so forth, since minimizing the execution time is the
ultimate goal. OpenAD contains heuristics that address these practical aspects. For
theoretical investigations it is certainly possible to count the individual multiplica-
tions and additions separately, as well as memory reads and writes. Additions occur
optionally in conjunction with multiplications for vertex and edge elimination. For
face elimination, however, one can easily construct cases where a single elimination
step entails more than one addition. This is due to the current face elimination merge
rule, where the elimination of a face enables the merging of up to two additional
vertex pairs in G. Most results on face elimination optimality ignore these additions
altogether. It has been conjectured, however, that there is always an optimal elimi-
nation sequence that completely avoids additions through merging. This is subject of
ongoing research. We also mentioned the issue of extra additions possibly introduced
by steps 3 and 4 of Algorithm 3. In practice there is a principal dominance of the
execution time of a multiplication over an addition which makes ignoring additions
plausible. For data read and write operations there is no such generic statement
and their execution times are highly hardware and context dependent. Including
these timings would make general assumptions and optimality statements impossible.
Moreover, the generated elimination code jac is itself subject to subsequent compiler
optimization. Therefore, we consider the suggested optimality measure sufficient for
this compiler and hardware-independent optimization.

In Algorithm 3, step 3, we mentioned the issue of scarcity preservation. There are
functions f that have a dense f’ but have graph representations with far fewer edges
than the final bipartite graph. In [8, 6] the term scarcity was introduced to denote this
difference. Scarcity-preserving eliminations have the narrower objective of reducing
or maintaining the number of edges with nontrivial labels. Despite the similarity to
the objective of constant folding, there are some differences. With constant folding we
eventually want to minimize operations for the computation of the Jacobian, whereas
scarcity-preserving eliminations minimize the operations for repeated Jacobian vector
products. A o considered here for constant folding is complete, whereas a scarcity-
preserving o will generally be an incomplete elimination sequence. Moreover, the
set of scarcity-preserving graph modifications suggested in [8, 6] contains a rerouting
operation that can be interpreted as an inverse face elimination. This prevents an
easy integration of both objectives. However, one can exploit the idea of cutting an
elimination sequence short if there is an intermediate directed line graph representa-
tion with fewer vertices than the final tripartite directed line graph. Therefore, we
note that the proposed constant folding steps 1, 2a/2b and 4a/4b in Algorithm 3
preserve scarcity as well. Steps 3a/3b preserve scarcity only for absorbed fill-in and
if the absorbing label is variable. We can modify the heuristics to represent label
categories in the directed line graph to enable a scarcity-preserving face elimination.
The investigation of such a modified optimization criterion is the subject of ongoing
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research.
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